If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9900x^2+200x-100=0
a = 9900; b = 200; c = -100;
Δ = b2-4ac
Δ = 2002-4·9900·(-100)
Δ = 4000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4000000}=2000$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-2000}{2*9900}=\frac{-2200}{19800} =-1/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+2000}{2*9900}=\frac{1800}{19800} =1/11 $
| 10x+10+6x+4+x^2+34=180 | | 3x+1=2x+-2 | | X2+12x+35=0 | | -3/4x+25=-32 | | -3(3x+2)=-24 | | 1-8x=-71 | | 7*0.75x=2.80 | | 37+x=76 | | 20/y=9 | | (y-1)(y+4)=y2+5 | | 3(2p-1+2(5p-10)=8p+9 | | -3x+x=15 | | 2(n+1)=5n-4 | | 32+4x=4(x+8) | | 12x=-5x^2 | | 10+x=-98 | | 3(2p-1)+2(5p-10)=8p+p | | 4n+5=5(n+1)-1n | | 21-1/2x=17 | | 3u+4=43 | | 12x+5x^2=0 | | 4n-4=5n-4 | | 26+7=4x+47 | | -7n+29=-2(-3n+5) | | 54+x=33 | | 4^(3x-1)=64 | | -2(x+7)=-16 | | 2-1x=0-2x | | 1/2x-2/4=-3/4 | | 5{5x}=0.04 | | -2(x+7)=-15 | | -8m=6 |